\qquad

NATIONAL ACADEMY OF SCIENCES.

VOL. IV.

EIGHTH MEMOIR.

ON THE DETERMINATION OF ELLIPTIC ORBITS FROM THREE COMPLETE OBSERVATIONS.

NATIONAL ACADEMY OF SCIENCES.

VOL. IV.

EIGHTH MEMOIR.

ON THE DETERMINATION OF ELLIPTIC ORBITS FROM THREE COMPLETE OBSERVATIONS.

ON THE DETERMINATION OF ELLIPTIC ORBITS FROM THREE COMPLETE OBSERVATIONS.

By J. Willard Gibbs.

The determination of an orbit from three complete observations by the solution of the equations which represent elliptie motion presents so great diffenlties in the general case, that in the first solution of the problem we must generally limit ourselves to the case in which the intervals between the observations are not very long. In this case we substitute some comparatively simple relations between the unknown quantities of the problem, which have an approximate validity for short intervals, for the less manageable relations which rigoronsly subsist between these quantities. A comparison of the approximate solution thas obtained with the exact laws of elliptic motion will always afford the means of a closer approximation, and by a repetition of this process we may arrive at any required degree of accuracy.

It is therefore a problem not without interest-it is, in faet, the natural point of departure in the study of the determination of orbits-to express in a manner combining as far as possible simplieity and aceuraey the relatious between three positions in an orbit separated by small or moderate intervals. The problem is not eutirely determinate, for we may lay the greater stress upon simplieity or upon aceuraey; we may seek the most simple relations which are sufficiently accurate to give us any approximation to an orbit, or we may seek the most exact expression of the real relations, which shall not be too complex to be serviceable.

DERIVATION OF THE FUNDAMENTAL EQUATION.
The following very simple considerations afford a vector equation, uot very complex and quite amenable to analytical transformation, whieh expresses the relations between three positions in an orbit separated by small or moderate intervals, with au aecuracy far exeeeding that of the approximate relations generally used in the determination of orbits.

If we adopt such a unit of time that the acceleration due to the sun's action is unity at a unit's distance, and denote the vectors* drawn from the sus to the body in its three positions by

[^0]$\Re_{1}, \Re_{2}, \Re_{3}$, and the lengths of these vectors (the heliocentric distances) by r_{1}, r_{2}, r_{3}, the accelerations corresponding to the three positions will be represented by $-\frac{\mathscr{Y}_{1}}{r_{1}{ }^{3}},-\frac{\Re_{2}}{r_{2}{ }^{3}},-\frac{\Re_{3}}{r_{3}{ }^{3}}$. Now the motion between the positions considered may be expressed with a high degree of accuracy by an equation of the form
$$
\mathfrak{R}=\mathfrak{R}+t \mathfrak{B}+t^{2} \mathbb{C}+t^{3} \mathfrak{D}+t^{4} \mathbb{E},
$$
having five vector constants. The actual motion rigorously satisfies six conditions, viz., if we write τ_{3} for the interval of time between the first and second positions, and τ_{1} for that between the second and third, and set $t=0$ for the second position,
for $t=-\tau_{3}$,
$$
\mathfrak{R}=\Re_{1}, \quad \frac{d^{2} \mathfrak{H}}{d t^{2}}=-\frac{\Re_{1}}{r_{1}^{3}} ;
$$
for $t=0$,
$$
\mathfrak{R}=\Re_{2}, \quad \frac{d^{2} M t}{d t^{2}}=-\frac{\Re_{2}}{r_{2}{ }^{3}} ;
$$
for $t=\tau_{1}$,
$$
\Re=\Re_{3}, \quad \frac{d^{2} \Re t}{d t^{2}}=-\frac{\Re_{3}}{r_{3}{ }^{3}}
$$

We may therefore write with a high degree of approximation :

$$
\begin{aligned}
& \mathfrak{R}_{1}=\mathfrak{Q}-\tau_{3} \mathfrak{D}+\tau_{3}{ }^{2} \mathbb{C}-\tau_{3}{ }^{3} \mathfrak{D}+\tau_{3}{ }^{4} \mathfrak{G} \\
& \Re_{2}=\mathfrak{A} \\
& \Re_{3}=\mathfrak{Q}+\tau_{1} \mathfrak{B}+\tau_{1}{ }^{2} \mathfrak{C}+\tau_{1}{ }^{3} \mathfrak{D}+\tau_{1}{ }^{4} \mathbb{E} \\
& -\frac{\Re_{1}}{r_{1}{ }^{3}}=2 \mathbb{C}-6 \tau_{3} D+12 \tau_{3}{ }^{2} \mathbb{E} \\
& -\frac{\Re_{2}}{r_{2}{ }^{3}}=2 \mathbb{C} \\
& -\frac{\Re_{3}}{r_{3}}=2 \mathbb{C}+6 \tau_{1} \mathfrak{D}+12 \tau_{1}{ }^{2} \text { (モ. }
\end{aligned}
$$

a rotation from \mathfrak{A} to \mathfrak{B} appears counter-clock-wise. It will be called the skew product of \mathfrak{U} and \mathfrak{B}. If the rectangular components of $\mathfrak{\vartheta}$ and \mathfrak{B} are x, y, z, and $x^{\prime}, y^{\prime}, z^{\prime}$, those of $\mathcal{U} \times \mathfrak{B}$ will be

$$
y z^{\prime}-z y^{\prime}, \quad \quad z x^{\prime}-x z^{\prime}, \quad * \quad x y^{\prime}-y x^{\prime}
$$

The notation (धㅋC) denotes the volume of the parallelopiped of which three edges are obtained by laying off the vectors $\mathfrak{A}, \mathfrak{B}$, and \mathbb{C} from any same point, which volume is to be taken positively or negatively, according as the vector \mathbb{C} falls on the side of the plane containing \mathfrak{F} and \mathfrak{B}, on which a rotation from \mathfrak{A} to \mathfrak{B} appears counter-clock-wise, or on the other side. If the rectangular components of $\mathfrak{N}, \mathfrak{B}$, and \mathfrak{C} are $x, y, z ; x^{\prime}, y^{\prime}, z^{\prime} ;$ and $x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$,

$$
(\text { \&BC })=\left|\begin{array}{lll}
x & y & z \\
x^{\prime} & y^{\prime} & z^{\prime} \\
x^{\prime \prime} & y^{\prime \prime} & z^{\prime \prime}
\end{array}\right|
$$

It follows, from the above definitions, that for any vectors $\mathfrak{N}, \mathfrak{B}$, and \mathbb{C}
and

$$
(\mathfrak{M B} \mathbb{C})=\mathfrak{R} \cdot(\mathfrak{B} \times \mathbb{C})=\mathfrak{B} \cdot(\mathbb{C} \times \mathfrak{N})=\mathbb{C} \cdot(\mathfrak{N} \times \mathfrak{B}) ;
$$

also that $\mathfrak{N} \cdot \mathfrak{B}, \mathfrak{Q} \times \mathfrak{B}$, are distributive functions of \mathfrak{Q} and \mathfrak{B}, and ($\mathfrak{F B} \mathfrak{(g)}$ a distributive function of $\mathfrak{N}, \mathfrak{B}$, and \mathfrak{E}, for example, that if $\mathscr{q}=9+9$,
and so for \mathfrak{B} and \mathfrak{C}.
The notation $(\mathscr{F} \mathcal{B C})$ is identical with that of Lagrange in the Mecanique Analytique, except that there its use is limited to unt vectors. The signification of $\mathbb{Q} \times \mathcal{B}$ is closely related to, bat not identical with, that of the notation [$r_{1} r_{0}$] commonly used to denote the double area of a triangle determined by two positions in an orbit.

From these six equations the five constants $\mathfrak{N}, \mathfrak{M}, \mathbb{C}, \mathfrak{D}, \mathbb{E}$ may be eliminated, leaving a single equation of the form

$$
\begin{equation*}
A_{1}\left(1+\frac{B_{1}}{r_{1}^{3}}\right) \Re_{1}-\left(1-\frac{B_{2}}{r_{2}^{3}}\right) \Re_{2}+A_{3}\left(1+\frac{B_{3}}{r_{3}{ }^{3}}\right) \Re_{3}=0, \tag{1}
\end{equation*}
$$

where

$$
\begin{array}{ccc}
A_{1}=\frac{\tau_{1}}{\tau_{1}+\tau_{3}} \quad A_{3}=\frac{\tau_{3}}{\tau_{1}+\dot{\tau}_{3}} \\
B_{1}=\frac{1}{12}\left(-\tau_{1}{ }^{2}+\tau_{1} \tau_{3}+\tau_{3}{ }^{2}\right) & B_{2}=\frac{1}{12}\left(\tau_{1}{ }^{2}+3 \tau_{1} \tau_{3}+\tau_{3}{ }^{2}\right) \quad B_{3}=\frac{1}{12}\left(\tau_{1}{ }^{2}+\tau_{1} \tau_{3}-\tau_{3}{ }^{2}\right) .
\end{array}
$$

This we shall call our fundamental equation. In order to discuss its geometrical signification, let us set

$$
\begin{equation*}
n_{1}=A_{1}\left(1+\frac{B_{1}}{r_{1}{ }^{3}}\right) \quad n_{2}=\left(1-\frac{B_{2}}{r_{2}{ }^{3}}\right) \quad n_{3}=A_{3}\left(1+\frac{B_{3}}{r_{3}{ }^{3}}\right) \tag{2}
\end{equation*}
$$

so that the equation will read

$$
\begin{equation*}
n_{1} \Re_{1}-\dot{n}_{2} \Re_{2}+n_{3} \Re_{3}=0 . \tag{3}
\end{equation*}
$$

This expresses that the vector $n_{2} \stackrel{\Re}{2}_{2}$ is the diagonal of a parallelogram of which $n_{1} \Re_{1}$ and $n_{3} \Re_{3}$ are sides. If we multiply by \Re_{3} and by \Re_{1}, in skero multiplication, we get

$$
\begin{equation*}
n_{1} \Re_{1} \times \Re_{3}-n_{2} \Re_{2} \times \Re_{3}=0, \quad-n_{2} \Re_{1} \times \Re_{2}+n_{3} \Re_{1} \times \Re_{3}=0, \tag{4}
\end{equation*}
$$

whence

$$
\begin{equation*}
\frac{\Re_{2} \times H_{3}}{n_{1}}=\frac{H_{1} \times M_{3}}{n_{2}}=\frac{H_{1} \times M_{2}}{n_{3}} . \tag{5}
\end{equation*}
$$

Our equation may therefore be regarded as signifying that the three vectors $\Re_{1}, \Re_{2}, \Re_{3}$ lie in one plane, and that the three triangles determined each by a pair of these vectors, and nsually denoted by $\left[r_{2} r_{3}\right],\left[r_{1} r_{3}\right],\left[r_{1} r_{2}\right]$, are proportional to

$$
A_{1}\left(1+\frac{B_{1}}{r_{1}^{3}}\right), \quad\left(1-\frac{B_{2}}{r_{2}{ }^{3}}\right), \quad \quad A_{3}\left(1+\frac{B_{3}}{r_{3}^{3}}\right)
$$

Since this vector equation is equivalent to three ordinary equations, it is evidently sufficient to determine the three positions of the bolly in connection with the conditions that these positions must lie upon the lines of sight of three observations. To give aualytical expression to these conditions, we may write $\mathbb{E}_{1}, \mathbb{E}_{2}, \mathfrak{E}_{3}$ for the vectors drawn from the sun to the three positions of the earth (or, more exactly, of the observatories where the observations have been made), $\mathcal{\delta}_{1}, \mathcal{\delta}_{2}, \mathcal{\delta}_{3}$ for unit vectors drawn in the directious of the body, as observed, and $\rho_{1}, \rho_{2}, \rho_{3}$ for the three distances of the body from the places of observation. We have then

$$
\begin{equation*}
\mathbb{M}_{1}=\mathscr{E}_{1}+\rho_{1} \overparen{\delta}_{1}, \quad \mathbb{R}_{2}=\mathbb{E}_{2}+\rho_{2} \widehat{\delta}_{2}, \quad \Re_{3}=\mathbb{E}_{3}+\rho_{3} \tilde{\delta}_{3} . \tag{6}
\end{equation*}
$$

By substitutiou of these values our fundamental equation becomes

$$
\begin{equation*}
A_{1}\left(1+\frac{B_{1}}{r_{1}{ }^{3}}\right)\left(\tilde{E}_{1}+\rho_{1} \tilde{\delta}_{1}\right)-\left(1-\frac{B_{2}}{r_{2}^{3}}\right)\left(\mathfrak{E}_{2}+\rho_{2} \tilde{\delta}_{2}\right)+A_{3}\left(1+\frac{B_{3}}{r_{3}{ }^{3}}\right)\left(\mathfrak{E}_{3}+\rho_{3} \tilde{\delta}_{3}\right)=0, \tag{7}
\end{equation*}
$$

where $\rho_{1}, \rho_{2}, \rho_{3}, r_{1}, r_{2}, r_{3}$ (the geocentric and heliocentric distances) are the only unknown quantities. From equations (6) we also get, by squariug both members in each,

$$
\begin{equation*}
r_{1}{ }^{2}=\left(\mathfrak{F}_{1}{ }^{2}+2\left(\mathfrak{F}_{1} \cdot \widetilde{\gamma}_{1}\right) \rho_{1}+\rho_{1}{ }^{2}, \quad r_{2}{ }^{2}=\left(\mathscr{F}_{2}{ }^{2}+2\left(\mathfrak{E}_{2} \cdot \tilde{ष}_{2}\right) \rho_{2}+\rho_{2}{ }^{2}, \quad r_{3}{ }^{2}=\left(\mathfrak{E}_{3}{ }^{2}+2\left(\mathfrak{F}_{3} \cdot \widetilde{\delta}_{3}\right) \rho_{3}+\rho_{3}{ }^{3},\right.\right.\right. \tag{8}
\end{equation*}
$$

by which the valucs of r_{1}, r_{2}, r_{3} may be derived from those of $\rho_{1}, \rho_{2}, \rho_{3}$, or vice versâ. Equations (7) and (8), which are equivalent to six ordinary equations, are sufficient to determine the six
quantities $r_{1}, r_{2}, r_{3}, \rho_{1}, \rho_{2}, \rho_{3}$; or, if we suppose the values of r_{1}, r_{2}, r_{3} in terms of $\rho_{1}, \rho_{2}, \rho_{3}$ to be substituted in equation (7), we have a single vector equation, from which we may determine the three geocentric distances $\rho_{1}, \rho_{2}, \rho_{3}$.

It remains to be shown, first, how the numerical solution of the equation may be performed, and, secondly, how such an approximate solution of the actual problem may furnish the basis of a closer approximation.

SOLUTION OF THE FUNDAMENTAL EQUATION.

The relations with which we have to do will be rendered a little more simple if instead of each geocentric distance we introduce the distance of the body from the foot of the perpendicular from the sun upon the line of sight. If we set

$$
\begin{array}{lll}
q_{1}=\rho_{1}+\left(\mathbb{E}_{1} \cdot \mathfrak{F}_{1}\right), & \boldsymbol{q}_{2}=\rho_{2}+(\mathbb{E}_{2} \cdot \overbrace{2}), & q_{3}=\rho_{3}+(\mathbb{E}_{3} \cdot \overbrace{3}), \\
p_{1}{ }^{2}=\mathbb{E}_{1}^{2}-\left(\mathbb{E}_{1} \cdot \widetilde{\delta}_{1}\right)^{2}, & p_{2}{ }^{2}=\left(\mathbb{E}_{2}{ }^{2}-\left(\mathbb{E}_{2} \cdot \widetilde{\delta}_{2}\right)^{2},\right. & p_{3}=\left(\mathbb{E}_{3}^{2}-\left(\mathbb{E}_{3} \cdot \widetilde{\gamma}_{3}\right)^{2},\right. \tag{10}
\end{array}
$$

equations (8) become

$$
\begin{equation*}
r_{1}^{2}=q_{1}{ }^{2}+p_{1}{ }^{2}, \quad r_{2}^{2}=q_{2}{ }^{2}+p_{2}^{2}, \quad r_{3}{ }^{2}=q_{3}^{2}+p_{3}{ }^{2} \tag{11}
\end{equation*}
$$

Let us also set, for brevity,

$$
\begin{equation*}
\mathfrak{G}_{1}=A_{1}\left(1+\frac{B_{1}}{r_{1}^{3}}\right)\left(\mathbb{E}_{1}+\rho_{1} \mathscr{\varnothing}_{1}\right), \quad \bigodot_{2}=-\left(1-\frac{B_{2}}{r_{2}^{3}}\right)\left(\mathbb{E}_{2}+\rho_{2} \mathscr{\varnothing}_{2}\right), \quad \bigodot_{3}=A_{3}\left(1+\frac{B_{3}}{r_{3}^{3}}\right)\left(\mathbb{E}_{3}+\rho_{3} \mathscr{\delta}_{3}\right) \tag{12}
\end{equation*}
$$

Then $\Xi_{1}, \Xi_{2}, \Xi_{3}$ may be regarded as functions respectively of $\rho_{1}, \rho_{3}, \rho_{3}$, therefore of q_{1}, q_{3}, q_{3}, and if we set

$$
\begin{equation*}
\varsigma^{\prime}=\frac{d \varsigma_{1}}{d q_{1}}, \quad \S^{\prime \prime}=\frac{d \varsigma_{2}}{d q_{2}}, \quad \varsigma^{\prime \prime \prime}=\frac{d \widetilde{\Xi}_{3}}{d q_{3}} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{S}_{1}=\mathfrak{G}_{1}+\mathfrak{G}_{2}+\mathfrak{G}_{3}, \tag{14}
\end{equation*}
$$

we shall have

$$
\begin{equation*}
d \mathfrak{S}=\mathbb{S}^{\prime} d q_{1}+\mathbb{S}^{\prime \prime} d q_{2}+\mathbb{S}^{\prime \prime \prime} d q_{3} . \tag{15}
\end{equation*}
$$

To determine the value of $\mathfrak{ভ}^{\prime}$, we get by differentiation

$$
\begin{equation*}
\Theta^{\prime}=A_{1}\left(1+\frac{B_{1}}{r_{1}{ }^{3}}\right) \mathscr{\delta}_{1}-A_{1} \frac{3 B_{1}}{r_{1}{ }^{4}} \frac{d r_{1}}{d q_{1}}\left(\mathbb{E}_{1}+\rho_{1} \varnothing_{1}\right) . \tag{16}
\end{equation*}
$$

But by (11)

$$
\begin{equation*}
\frac{d r_{1}}{d q_{1}}=\frac{q_{1}}{r_{1}} . \tag{17}
\end{equation*}
$$

Therefore

Now if any values of q_{1}, q_{2}, q_{3} (either assumed or obtained by a previous approximation) give a certain residual \mathcal{G} (which would be zero if the values of q_{1}, q_{2}, q_{3} satisfied the fundamental equation), and we wish to find the corrections $\Delta q_{1}, \Delta q_{2}, \Delta q_{3}$, which must be added to q_{1}, q_{2}, q_{3}
to reduce the residual to zero, we may apply equation (15) to these finite differences, and will have approximately, when these differences are not very large,

$$
\begin{equation*}
-\Subset=\mathbb{C}^{\prime} \Delta q_{1}+\bigodot^{\prime \prime} \Delta q_{2}+\bigodot^{\prime \prime \prime} \Delta q_{3} \tag{19}
\end{equation*}
$$

This gives*

From the corrected values of q_{1}, q_{2}, q_{3} we may calculate a new residual $\epsilon_{\text {, and from that determine }}$ another correction for each of the quantities q_{1}, q_{2}, q_{3}.

It will sometimes be worth while to use formule a little less simple for the sake of a more rapid approximation. Instead of equation (19) we may write, with a higher degree of accuracy,

$$
\begin{equation*}
-\subseteq=\Im^{\prime} \Delta q_{1}+\Im^{\prime \prime} \Delta q_{2}+\Im^{\prime \prime \prime} \Delta q_{3}+\frac{1}{2} \mathfrak{T}^{\prime}\left(\Delta q_{1}\right)^{2}+\frac{1}{2} \mathfrak{\Im}^{\prime \prime}\left(\Delta q_{2}\right)^{2}+\frac{1}{2} \Im^{\prime \prime \prime}\left(\Delta q_{3}\right)^{2}, \tag{21}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
\mathfrak{I}^{\prime}=\frac{d^{2} \Xi_{1}}{d q_{1}{ }^{2}}=2 A_{1} B_{1} \frac{d\left(r_{1}{ }^{-3}\right)}{d q_{1}} \widetilde{r}_{1}+\frac{B_{1}}{1+B_{1} r_{1}{ }^{-3}} \frac{d^{2}\left(r_{1}{ }^{-3}\right)}{d q_{1}{ }^{2}} \Xi_{1} \\
\mathfrak{\Sigma}^{\prime \prime}=\frac{d^{2} \Xi_{2}}{d q_{2}{ }^{2}}=2 B_{2} \frac{d\left(r_{2}{ }^{-3}\right)}{d q_{2}} \widetilde{\delta}_{2}-\frac{B_{2}}{1-B_{2} r_{2}{ }^{-3}} \frac{d^{2}\left(r_{2}{ }^{-3}\right)}{d q_{2}{ }^{2}} \Xi_{2} \tag{22}\\
\mathfrak{I}^{\prime \prime \prime}=\frac{d^{2} \Xi_{3}}{d q_{3}{ }^{2}}=2 A_{3} B_{3} \frac{d\left(r_{3}{ }^{-3}\right)}{d q_{3}} \mathscr{E}_{3}+\frac{B_{3}}{1+B_{3} r_{3}{ }^{-3}} \frac{d^{2}\left(r_{3}{ }^{-3}\right)}{d q_{3}{ }^{2}} \bigodot_{3}
\end{array}\right\}
$$

It is evident that $\mathfrak{I}^{\prime \prime}$ is gencrally many times greater than \mathfrak{I}^{\prime} or $\mathfrak{I}^{\prime \prime \prime}$, the factor B_{2}, in the case of equal intervals, being exactly ten times as great as $A_{1} B_{1}$ or $A_{3} B_{3}$. This shows, in the first place, that the accurate determinatiou of Δq_{2} is of the most importance for the subsequent approximations. It also shows that we may attain nearly the same accuracy in writing

$$
\begin{equation*}
-\Subset=\Theta^{\prime} \Delta q_{1}+\bigodot^{\prime \prime} \Delta q_{2}+\Subset^{\prime \prime \prime} \Delta q_{3}+\frac{1}{2} \Im^{\prime \prime} \Delta q_{2}^{2} \tag{23}
\end{equation*}
$$

We may, howerer, often do a little better than this without using a more complicated eqnation. For $\mathfrak{I}^{\prime}+\mathfrak{I}^{\prime \prime \prime}$ may be estimated very ronghly as equal to $\frac{1}{5} \Im^{\prime \prime}$. Whenever, therefore, Δq_{1} and Δq_{3} are about as large as Δq_{2}, as is often the case, it may be a little better to use the coefficient $\frac{8}{10}$ instead of $\frac{1}{2}$ in the last term.

For Δq_{2}, then, we have the equation

$$
\begin{equation*}
-\left(\Theta^{\prime \prime \prime} \mathbb{E}^{\prime}\right)=\left(\Theta^{\prime} \Theta^{\prime \prime} \Theta^{\prime \prime \prime}\right) \Delta q_{2}+\frac{8}{10}\left(\mathfrak{\Sigma}^{\prime \prime} \Theta^{\prime \prime \prime} \mathbb{E}^{\prime}\right) \Delta q_{2}^{2} \tag{24}
\end{equation*}
$$

(${ }^{\prime \prime}$ 厄゙"ভ') is easily computed from the formula

$$
\begin{equation*}
\left(\Sigma^{\prime \prime} \Xi^{\prime \prime \prime} \Xi^{\prime}\right)=\frac{1}{q_{2}}\left(1-5 \frac{q_{2^{2}}}{r_{2}{ }^{2}}\right)\left(\left(\S^{\prime} \Xi^{\prime \prime} \Xi^{\prime \prime \prime}\right)+\left(\tilde{\delta}_{2} \Xi^{\prime \prime \prime} \Xi^{\prime}\right)\right)-\frac{B_{2}}{q_{2} r_{2}^{3}}\left(1+\frac{q_{2}{ }^{2}}{r_{2}{ }^{2}}\right)\left(\tilde{\delta}_{2} \Xi^{\prime \prime \prime} \Xi^{\prime}\right) \tag{25}
\end{equation*}
$$

which may be derived from equations (18) and (22).
The quadratic equation (24) gives two values of the correction to be applied to the position of the body. When they are not too large, they will belong to two different solutions of the problem, generally to the two least remored from the values assumed. But a very large value of Δq_{2} must not be regarded as affording any trustworthy indication of a solntion of the problem. In the majority of cases, we ouly care for one of the roots of the equation, which is distinguished by being very small, and which will be most easily calculated by a small correction to the value which we get by neglecting the quadratic term. \dagger

[^1]When a comet is somewhat near the earth we may make use of the fact that the earth's orbit is one solution of the problem, i.e., that $-\rho_{2}$ is one value of Δq_{2}, to save the trifling labor of computing the value of ($\mathfrak{\Sigma}^{\prime \prime} \mathbb{S}^{\prime \prime \prime} \Xi^{\prime}$). For it is evident from the theory of equations that if $-\rho_{2}$ and z are the two roots,

whence

$$
\frac{1}{z}=\frac{1}{\rho_{2}}-\frac{\left(\Theta^{\prime} \varsigma^{\prime \prime} \varrho^{\prime \prime \prime}\right)}{\left(\varrho^{\prime \prime \prime} \Phi^{\prime}\right)} .
$$

Now $-\frac{\left(\mathbb{S}^{\prime \prime \prime} \mathbb{S}^{\prime}\right)}{\left(\mathbb{S}^{\prime} \mathbb{S}^{\prime \prime} \mathbb{S}^{\prime \prime \prime}\right)}$ is the value of Δq_{2}, which we obtain if we neglect the quadratic term in equation (24). If we call this value $\left[\Delta q_{2}\right]$, we have for the more exact value*

$$
\begin{equation*}
\Delta q_{2}=\frac{\left[\Delta q_{2}\right]}{1+\frac{\left[\Delta q_{2}\right]}{\rho_{2}}} \tag{26}
\end{equation*}
$$

The quantities Δq_{1} and Δq_{3} might be calculated by the equations

But a little examination will show that the coefficients of $\Delta q_{2}{ }^{2}$ in these equations will not generally have very different values from the coefficient of the same quantity in equation (24). We may therefore write with sufficient accuracy

$$
\begin{equation*}
\Delta q_{1}=\left[\Delta q_{1}\right]+\Delta q_{2}-\left[\Delta q_{2}\right], \quad \Delta q_{3}=\left[\Delta q_{3}\right]+\Delta q_{2}-\left[\Delta q_{2}\right], \tag{28}
\end{equation*}
$$

where $\left[\Delta q_{1}\right],\left[\Delta q_{2}\right],\left[\Delta q_{3}\right]$ denote the values obtained from equations (20).
In making successive corrections of the distances q_{1}, q_{2}, q_{3} it will not be necessary to recalenlate the values of $\Im^{\prime}, \Im^{\prime \prime}$, $\Im^{\prime \prime \prime}$, when these have been calculated from fairly good values of q_{1}, q_{2}, q_{3}. But when, as is generally the case, the first assumption is only a rude guess, the values of $\mathfrak{ङ}^{\prime}$, $\mathfrak{\Im}^{\prime \prime}$, $\mathfrak{¢}^{\prime \prime \prime}$ should be recalculated after one or two corrections of q_{1}, q_{2}, q_{3}. To get the best results when we do not recalculate $\mathfrak{\Im}^{\prime}$, $\mathfrak{\Im}^{\prime \prime}$, $\mathfrak{\Im}^{\prime \prime \prime}$, we may proceed as follows: Let \Im^{\prime}, $\Im^{\prime \prime}$, $\Im^{\prime \prime \prime}$ denote the values which have been calculated; $D q_{1}, D q_{2}, D q_{3}$, respectively, the sum of the corrections of each of the quantities q_{1}, q_{2}, q_{3}, which have been made since the calculation of $\mathfrak{\Im}^{\prime}, \mathfrak{\Im}^{\prime \prime}, \mathfrak{\Im}^{\prime \prime \prime} ; \mathfrak{\Im}$ the residual after all the corrections of q_{1}, q_{2}, q_{3}, which have been made; and $\Delta q_{1}, \Delta q_{2}, \Delta q_{3}$ the remaining corrections which we are seeking. We have, then, very nearly

$$
\begin{equation*}
-\mathbb{S}=\left\{\mathbb{\Xi}^{\prime}+\mathfrak{T}^{\prime}\left(D q_{1}+\frac{1}{2} \Delta q_{1}\right)\right\} \Delta q_{1}+\left\{\mathbb{S}^{\prime \prime}+\mathfrak{T}^{\prime \prime}\left(D q_{2}+\frac{1}{2} \Delta q_{2}\right)\right\} \Delta q_{2}+\left\{\mathbb{\Xi}^{\prime \prime \prime}+\mathfrak{I}^{\prime \prime \prime}\left(D q_{3}+\frac{1}{2} \Delta q_{3}\right)\right\} \Delta q_{3} . \tag{29}
\end{equation*}
$$

The same considerations which we applied to equation (21) enable us to simplify this equation also, and to write with a fair degree of accuracy

$$
\begin{align*}
& \Delta q_{1}=\left[\Delta q_{1}\right]+\Delta q_{2}-\left[\Delta q_{2}\right], \quad \Delta q_{3}=\left[\Delta q_{3}\right]+\Delta q_{2}-\left[\Delta q_{2}\right], \tag{30}
\end{align*}
$$

where

[^2]
CORRECTION OF THE FUNDAMENTAL EQUATION.

When we have thus determined, by the numerical solution of our fundamental equation, approximate values of the three positions of the body, it will always be possible to apply a small numerical correction to the equation, so as to make it agree exactly with the laws of elliptic motion in a fictitious case differing but little from the actual. After such a correction, the equation will evidently apply to the actual case with a much higher degree of approximation.

There is room for great diversity in the application of this principle. The method which appears to the writer the most simple and direct is the following, in which the correction of the intervals for aberration is combined with the correction required by the approximate uature of the equation.*

The solution of the fundamental equation gives us three points, which must necessarily lie in one plane with the sun, and in the lines of sight of the several observations. Throngh these points we may pass an ellipse, and calculate the intervals of time required by the exact laws of elliptic motion for the passage of the body hetween them. If these calculated interrals shonld be identical with the given intervals, corrected for aberration, we would evidently hare the true solution of the problem. But suppose, to fix our ideas, that the calculated intervals are a little too long. It is evident that if we repeat onr calculations, using in our fundamental equation intervals shortened in the same ratio as the calculated intervals have come out too long, the intervals calculated from the second solution of the fundamental equation must agree almost exactly with the desired values. If necessary, this process may be repeated, and thus any required degree of accuracy may be obtained, whenever the solution of the uncorrected equation gires an approximation to the true positions. For this it is necessary that the intervals should not be too great. It appears, however, from the results of the example of Ceres, given hereafter, in which the heliocentric motion exceeds 62°, but the calculated values of the intervals of time differ from the given values by little more than one part in two thousand, that we have here not approached the limit of the application of our formula.

In the usual terminology of the sulject, the fundamental equation with intervals uncorrected for aberration represents the first hypothesis, the same equation with the intervals affected by certain numerical coefficients (differing little from unity) represents the second hypothesis, the third hypothesis, should such be necessary, is represented by a similar equation, with corrected coeffcients, etc.

In the process indicated there are certain economies of labor which should not be left unmentioned, and certain precautions to be observed in order that the neglected fignres in our computations may not unduls influence the result.

It is evident, in the first place, that for the correction of our fundamental equation we need not trouble ourselves with the position of the orbit in the solar system. The intervals of time, which determine this correction, depend only on the three heliocentric distances r_{1}, r_{2}, r_{3} and the two heliocentric angles, which will be represented by $v_{2}-v_{1}$ and $v_{3}-r_{2}$, if we write v_{1}, v_{2}, r_{3} for the true anomalies. These angles ($v_{2}-v_{1}$ and $v_{3}-v_{2}$) may be determined from r_{1}, r_{2}, r_{3} and n_{1}, n_{2}, n_{3}, and therefore from r_{1}, r_{2}, r_{3} and the given intervals. For our fundamental equation, which may be written

$$
\begin{equation*}
n_{1} \Re_{1}-n_{2} \Re_{2}+n_{3} \Re_{3}=0 \tag{33}
\end{equation*}
$$

indicates that we may form a triangle in which the lengths of the sides shall be $n_{1} r_{1}, n_{2} r_{2}$, and $n_{3} r_{3}$, (let us say for brevity, s_{1}, s_{2}, s_{32}) and the directions of the sides parallel with the three heliocentric directions of the body. The angles opposite s_{1} and s_{3} will be respectively $v_{3}-v_{2}$ and $v_{2}-v_{1}$. We have therefore, hy a well-known formula,

$$
\begin{align*}
& \left.\tan \frac{v_{3}-v_{2}}{2}=\sqrt{\frac{\left(s_{1}-s_{2}+s_{3}\right)\left(s_{1}+s_{2}-s_{3}\right)}{\left(s_{1}+s_{2}+s_{3}\right)\left(-s_{1}+s_{2}+s_{3}\right)}}\right\} \\
& \left.\tan \frac{v_{2}-v_{1}}{2}=\sqrt{\frac{\left(-s_{1}+s_{2}+s_{3}\right)\left(s_{1}-s_{2}+s_{3}\right)}{\left(s_{1}+s_{2}+s_{3}\right)\left(s_{1}+s_{2}-s_{3}\right)}}\right) \tag{34}
\end{align*}
$$

[^3]As soon, therefore, as the solution of our fundamenta: equation has given a suflicient approximation to the values of r_{1}, r_{2}, r_{3} (say five-or six-figure values, if our final result is to be as exact as seven-figure logarithms can muke it), we calculate n_{1}, n_{2}, n_{3} with seven-figure logarithms by equations (2), and the holiocentric angles by equations (34).

The semi-parameter corresponding to these values of the heliocentric distances and angles is given by the equation

$$
\begin{equation*}
p=\frac{n_{1} r_{1}-n_{2} r_{2}+n_{3} r_{3}}{n_{1}-n_{3}+n_{3}} \tag{35}
\end{equation*}
$$

The expression $n_{1}-n_{2}+n_{3}$, which oceurs in the valne of the semi-parameter, and the expression $n_{1} r_{1}-n_{2} r_{2}+n_{3} r_{3}$, or $s_{1}-s_{3}+s_{3}$, which ocen's both in the value of the semi-parameter and in the formula for deteruining the heliocentric angles, represent small quantities of the second order (if we call the heliocentric angles small quantities of the first order), and cannot he very accurately determined from approximate numerical values of their separate terms. The first of these quantities may, howerer, be determined accurately by the formula

$$
\begin{equation*}
n_{1}-n_{2}+n_{3}=A_{1} A_{1} B_{1}{ }^{3}+\frac{B_{2}}{r_{2}{ }^{3}}+\frac{A_{3} B_{3}}{r_{3}{ }^{3}} \tag{36}
\end{equation*}
$$

With respect to the quantity $s_{1}-s_{3}+s_{3}$, a little consideration will show that if we are careful to use the same valne wherever the expression occurs, both in the formule for the heliocentric angles and for the semi-parameter, the inaceuracy of the determination of this value from the canse mentioned will be of no consequence in the process of correcting the fundamental equation. For, althongh the logarithm of $s_{1}-s_{2}+s_{3}$ as calculated by seven figure logarithms from r_{1}, r_{2}, r_{3} may be accurate only to fonr or five figures, we may regard it as absolutely correct if we make a very small change in the value of one of the heliocentrie distances (say r_{2}). We need not trouble ourselves farther about this change, for it will be of a magnitule which we neglect in computations with seven-igure tables. That the heliocentric angles thus determined may not agree as closely as they might with the positions on the lines of sight determined by the first solution of the fundamental equation is of no especial consequence in the correction of the fundamental equation, which ouls requires the exact fnlfillment of two conditions, viz., that our ralues of the heliocentric distances and angles shall have the relations required by the fundamental equation to the given intervals of time, and that they shall hare the relations required by the exact laws of elliptic motion to the calculated intervals of time. The third condition, that none of these values shall difier too widely from the actual values, is of a looser character.

After the determination of the heliocentric angles and the semi-parameter, the eccentricity and the true anomalies of the three positions may next be determined, and from these the intervals of time. These processes require no especial notice. The appropriate formule will be given in the Summary of Formulse.

DETERMINATION OF THE ORBIT FROM THE THREE POSITIONS AND THE INTELVALS OF TIME.
The values of the semi-parameter and the beliocentric angles as given in the preceding paragraphs depend upon the quantity $s_{1}-s_{2}+s_{3}$, the numerical determination of which from s_{1}, s_{2}, and s_{3} is critical to the second degree when the heliocentric angles are small. This was of no conséquence in the process which we have called the correction of the fundamental equation. But for the actual determination of the orbit from the positions given by the correctel equation- er by the uncorrected equation, when we judge that to be sufficient-a more acenrate determination of this quantity will generally be necessary. This may be obtained in different ways, of which the following is perhaps the most simple. Let us set

$$
\begin{equation*}
\epsilon_{1}=\epsilon_{3}-\Xi_{1} \tag{3i}
\end{equation*}
$$

and 8_{4} for the length of the vector Θ_{4}, obtainel by taking the square root of the sum of the squares of the components of the vector. It is evident that y_{2} is the longer and s_{4} the shorter diagonal of
a parallelogram of whieh the sides are s_{1} and s_{3}. The area of the triangle having the sides s_{1}, s_{2}, s_{3} is therefore equal to that of the triangle having the sides s_{1}, s_{3}, s_{4}, each being one-half of the parallelogram. This gives

$$
\begin{equation*}
\left(s_{1}+s_{2}+s_{3}\right)\left(-s_{1}+s_{2}+s_{3}\right)\left(s_{1}-s_{2}+s_{3}\right)\left(s_{1}+s_{2}-s_{3}\right)=\left(s_{1}+s_{4}+\delta_{3}\right)\left(-s_{1}+s_{4}+\delta_{3}\right)\left(s_{1}-s_{4}+s_{3}\right)\left(s_{1}+s_{4}-s_{3}\right), \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{1}-s_{2}+s_{3}=\frac{\left(s_{1}+s_{1}+s_{3}\right)\left(-s_{1}+s_{4}+s_{3}\right)\left(s_{1}-s_{4}+s_{3}\right)\left(s_{1}+s_{4}-s_{3}\right)}{\left(s_{1}+s_{2}+s_{3}\right)\left(-s_{1}+s_{2}+s_{3}\right)\left(s_{1}+s_{2}-s_{3}\right)} . \tag{39}
\end{equation*}
$$

The numerieal determination of this value of $s_{1}-s_{2}+\delta_{3}$ is critieal only to the first degree.
The eceentrieity and the true anomalies may be determined in the sane way as in the correction of the formula. The position of the orbit in space may be derived from the following eonsiderations. The veetor $-\epsilon_{2}$ is direeted from the sun toward the second position of the body; the veetor $\mathfrak{\bigotimes}_{4}$ from the first to the third position. If we set

$$
\begin{equation*}
\Theta_{5}=\mathbb{E}_{4}-\frac{\Theta_{4} \cdot \Theta_{2} \widetilde{\Xi}_{2}}{s_{2}^{2}} \tag{40}
\end{equation*}
$$

the veetor \bigodot_{5} will be in the plane of the orbit, perpendicular to $-\bigodot_{2}$ and on the side toward which anomalies increase. If we write ε_{5} for the length of ς_{5},

$$
-\frac{\varsigma_{2}}{s_{2}} \text { and } \frac{\varsigma_{5}}{s_{5}}
$$

will be unit vectors. Let \mathfrak{I} and \Im^{\prime} be unit veetors determining the position of the orbit, I being drawn from the sun toward the perihelion, and \Im^{\prime} at right angles to \mathfrak{J}, in the plane of the orbit, and on the side toward which anomalies increase. Then

$$
\begin{align*}
& \mathfrak{J}=-\cos v_{2} \frac{\mathcal{E}_{2}}{s_{2}}-\sin v_{2} \frac{\mathcal{E}_{5}}{s_{5}} \tag{41}\\
& \mathfrak{Y}=-\sin v_{2} \frac{\mathcal{E}_{2}}{s_{2}}+\cos v_{2} \frac{\mathcal{E}_{5}}{s_{5}} \tag{42}
\end{align*}
$$

The time of perilhelion passage (T) may be determined from any one of the observations by the equation

$$
\begin{equation*}
\frac{k}{a i}(t-T)=E-e \sin E \tag{43}
\end{equation*}
$$

the eceentric anomaly E being calculated from the true anomaly v. The interval $t-T$ in this equation is to be measured in days. A better value of T may be found by averaging the three values given by the separato observations, with such weights as the circumstances may suggest. But any considerable differences in the three values of T would indieate the necessity of a second eorreetion of the formula, and furnish the basis for it.

For the caleulation of an ephemeris we have

$$
\begin{equation*}
\mathfrak{M}=-a e \mathfrak{I}+\cos E a \mathfrak{S}+\sin E b \mathfrak{I}^{\prime} \tag{44}
\end{equation*}
$$

in connection with the preceding equation.
Sometimes it may be worth while to make the ealeulations for the correetion of the formula in the slightly louger form indicated for the determination of the orbit. This will be the case when we wish simnltaneously to correet the formula for its theoretieal imperfeetion, and to correct the observations by eomparison with others not too remote. The rough approximation to the orbit given by the uneorreeted formula may be sufficient for this purpose. In fact, for observations separated by very small interrals, the imperfection of the nucorrected formula will be likely to affeet the orbit less than the errors of the observations.

The computer may prefer to determine the orbit from the first and third heliocentrie positions with their times. This process, which has certain advantages, is perhaps a little longer than
that here given, and does not lend itself quite so readily to successive improvements of the hypothesis. When it is desired to derive an improved hypothesis from an orbit thus determined, the formulæ in § XII of the summary may be used.

SUMMARY OF FORMULA

WITH DIRECTIONS FOR USE.

[For the case in which an approximate orbit is known in advance, see XII.]

I.

Preliminary computations relating to the intervals of time.

$$
\begin{aligned}
t_{1}, t_{2}, t_{3} & =\text { times of the observations in days. } \\
\log k & =8.2355814 \\
\tau_{1} & =k\left(t_{3}-t_{2}\right) \\
A_{1} & =\frac{t_{3}-t_{2}}{t_{3}-t_{1}}
\end{aligned} \tau_{3}=k\left(t_{2}-t_{1}\right) .
$$

$$
B_{1}=\frac{-\tau_{1}^{2}+\tau_{1} \tau_{3}+\tau_{3}{ }^{2}}{12}
$$

$$
B_{2} \stackrel{\check{\tau_{1}{ }^{2}+3 \tau_{1} \tau_{3}+\tau_{3}{ }^{2}}}{12}
$$

$$
B_{3}=\frac{\tau_{1}{ }^{2}+\tau_{1} \tau_{3}-\tau_{3}{ }^{2}}{12}
$$

For coutrol:

$$
A_{1} B_{1}+B_{2}+A_{3} B_{3}=\frac{1}{2} \tau_{1} \tau_{3}
$$

II.

Preliminary computations relating to the first observation.

X_{1}, Y_{1}, Z_{1} (components of $\left(\mathbb{E}_{1}\right)=$ the heliocentric coördinates of the earth, increased by the geocentric coördinates of the observatory.
$\xi_{1}, \eta_{1}, \xi_{1}$ (components of ξ_{1})=the direction-cosines of the observed position, corrected for the aberration of the fixed stars.

$$
\mathfrak{E}_{1}^{2}=X_{1}^{2}+Y_{1}^{2}+Z_{1}^{2} \quad\left(\mathscr{E}_{1} \cdot \widetilde{\gamma}_{1}\right)=X_{1} \xi_{1}+Y_{1} \eta_{1}+Z_{1} \zeta_{1} \quad p_{1}^{2}=\mathscr{E}_{1}^{2}-\left(\mathscr{1}_{1} \cdot \widetilde{\mathscr{F}}_{1}\right)^{2}
$$

Preliminary computations relating to the second and third observations.

The formulæ are entirely analogous to those relating to the first observation, the quantities being distinguished by the proper suffixes.

III.

Equations of the first hypothesis.
When the preceding quantities have been computed, their numerical values (or their logarithms, when more convenient for computation,) are to be substituted in the following equations:

$$
\left.\begin{array}{lc}
& \text { Components of } \mathbb{E}_{1} \\
q_{1}=\rho_{1}+(\mathbb{E}_{1} \cdot \overbrace{1}) & \left.\alpha_{1}=A_{1} \xi_{1}\left(1+\mathrm{R}_{1}\right)\left(q_{1}+\frac{X_{1}}{\xi_{1}}-\left(\mathbb{E}_{1} \cdot \widetilde{\delta}_{1}\right)\right)\right) \\
r_{1}^{2}=q_{1}^{2}+p_{1}^{2} & \beta_{1}=A_{1} \eta_{1}\left(1+R_{1}\right)\left(q_{1}+\frac{Y_{1}}{\eta_{1}}-\left(\mathbb{E}_{1} \cdot \mathscr{ष}_{1}\right)\right) \\
R_{1}=\frac{B_{1}}{r_{1}^{3}} & \gamma_{1}=A_{1} \xi_{1}\left(1+R_{1}\right)\left(q_{1}+\frac{Z_{1}}{\xi_{1}}-\left(\mathbb{E}_{1} \cdot \widetilde{\delta}_{1}\right)\right)
\end{array}\right\} \mathrm{II}_{1}
$$

For control :

$$
s_{1}^{2}=\alpha_{1}^{2}+\beta_{1}^{2}+\gamma_{1}^{2}=A_{1}^{2}\left(1+R_{1}\right)^{2} r_{1}^{2}
$$

$$
\begin{aligned}
& \text { Components of } \Theta^{\prime} \\
& P^{\prime}=\frac{3 R_{1} q_{1}}{\left(1+R_{1}\right) r_{1}{ }^{2}} \\
& \left.\begin{array}{rl}
\alpha^{\prime} & =A_{1} \xi_{1}+A_{1} \xi_{1} R_{1}-P^{\prime \prime} \alpha_{1} \\
\beta^{\prime} & =A_{1} \eta_{1}+A_{1} \eta_{1} R_{1}-P^{\prime} \beta_{1} \\
\gamma^{\prime} & =A_{1} \xi_{1}+A_{1} \xi_{1} R_{1}-P^{\prime} \gamma_{1}
\end{array}\right\} 1 \mathrm{I}^{\prime} \\
& \gamma^{\prime}=A_{1} \xi_{1}+A_{1} \xi_{1} R_{1}-P^{\prime} \gamma_{1} \\
& \text { Components of } \Theta_{2} \\
& q_{2}=\rho_{2}+\left(\mathbb{E}_{2} \cdot \tilde{\gamma}_{2}\right) \\
& r_{2}{ }^{2}=q_{2}{ }^{2}+p_{2}{ }^{2} \\
& R_{2}=\frac{B_{2}}{r_{2}{ }^{3}} \\
& \left.\alpha_{2}=-\xi_{2}\left(1-R_{2}\right)\left(q_{2}+\frac{X_{2}}{\xi_{2}}-\left(⿷_{2} \cdot \mathscr{\S}_{2}\right)\right)\right) \\
& \left.\beta_{2}=-\eta_{2}\left(1-R_{2}\right)\left(q_{2}+\frac{Y_{2}}{\eta_{2}}-\left(⿷_{2} \cdot \bar{\gamma}_{2}\right)\right)\right\} \mathrm{III}_{2} \\
& \left.y_{2}=-\zeta_{2}\left(1-R_{2}\right)\left(q_{2}+\frac{Z_{2}}{\zeta_{2}}-\left(\mathcal{F}_{2} \cdot \tilde{\delta}_{2}\right)\right)\right)
\end{aligned}
$$

For control：

$$
s_{2}{ }^{2}=\alpha_{2}{ }^{2}+\beta_{2}{ }^{2}+\gamma_{2}{ }^{2}=\left(1-R_{2}\right)^{2} r_{2}{ }^{2}
$$

$$
\left.P^{\prime \prime}=\frac{3 R_{2} q_{2}}{\left(1-R_{2}\right) r_{2}^{2}} \quad \begin{array}{l}
\alpha^{\prime \prime}=-\xi_{2}+\xi_{2} R_{2}+P^{\prime \prime} \alpha_{2} \\
\beta^{\prime \prime}=-\eta_{2}+\eta_{2} R_{2}+P^{\prime \prime} \beta_{2} \\
\gamma^{\prime \prime}=-\xi_{2}+\xi_{2} R_{2}+P^{\prime \prime} \gamma_{2}
\end{array}\right\}
$$

Components of \mathbb{S}^{-}

Components of \mathbb{E}_{3}

$$
\left.\begin{array}{ll}
q_{3}=\rho_{3}+\left(\mathfrak{E}_{3} \cdot \delta_{3}\right) & \alpha_{3}=A_{3} \xi_{3}\left(1+R_{3}\right)\left(q_{3}+\frac{X_{3}}{\xi_{3}}-\left(⿷_{3} \cdot \tilde{\delta}_{3}\right)\right) \\
r_{3}{ }^{2}=q_{3}{ }^{2}+p_{3}{ }^{2} & \beta_{3}=A_{3} \eta_{3}\left(1+R_{3}\right)\left(q_{3}+\frac{Y_{3}}{\eta_{3}}-\left(⿷_{3} \cdot \tilde{\gamma}_{3}\right)\right) \\
R_{3}=\frac{B_{3}}{r_{3}{ }^{3}} & \gamma_{3}=A_{3} \xi_{3}\left(1+R_{3}\right)\left(q_{3}+\frac{Z_{3}}{\xi_{3}}-\left(⿷_{3} \cdot \tilde{\delta}_{3}\right)\right)
\end{array}\right\} 1 I_{3}
$$

For control：

$$
s_{3}{ }^{2}=\alpha_{3}{ }^{2}+\beta_{3}{ }^{2}+\gamma_{3}{ }^{2}=A_{3}{ }^{2}\left(1+R_{3}\right)^{2} r_{3}{ }^{2}
$$

Components of $\Theta^{\prime \prime \prime}$

$$
\left.\mathrm{P}^{\prime \prime \prime}=\frac{3 R_{3} \eta_{3}}{\left(1+R_{3}\right) r_{3}^{2}} \quad \begin{array}{l}
\alpha^{\prime \prime \prime}=A_{3} \xi_{3}+A_{3} \xi_{3} R_{3}-P^{\prime \prime \prime} \alpha_{3} \\
\beta^{\prime \prime \prime}=A_{3} \eta_{3}+A_{3} \eta_{3} R_{3}-P^{\prime \prime \prime} \beta_{3} \\
\gamma^{\prime \prime \prime}=A_{3} \xi_{3}+A_{3} \xi_{3} R_{3}-P^{\prime \prime \prime} \gamma_{3}
\end{array}\right\} I 1 I^{\prime \prime \prime}
$$

The computer is now to assume any reasonable values either of the geocentric distauces，ρ_{1} ， ρ_{2}, ρ_{3} ，or of the heliocentric distances，r_{1}, r_{2}, r_{3} ，（the former in the case of a comet，the latter in the case of an asteroid，）aud from these assumed values to compute the rest of the following quantities：

By equations III_{1} ， III^{\prime}
q_{1}
$\log r_{1}$
$\log R_{1}$
$\log \left(1+R_{1}\right)$
$\log P^{\prime}$
α_{1}
β_{1}
γ_{1}
α^{\prime}
β^{\prime}
γ^{\prime}

By equations $\mathrm{HI}_{2}, \mathrm{HI}^{\prime \prime}$ ．

$$
\log q_{2}
$$

$\log R_{2}$
$\log \left(1-R_{2}\right)$
$\log P^{\prime \prime}$
α_{2}
β_{2}
γ_{2}
$\alpha^{\prime \prime}$
$\beta^{\prime \prime}$
$\gamma^{\prime \prime}$

By equations $\mathrm{III}_{3}, \mathrm{III}^{\prime \prime \prime}$ ．
$\log r_{3}$
$\log R_{3}$
$\log \left(1+R_{3}\right)$
$\log P^{\prime \prime \prime}$

$$
\alpha_{3}
$$

$$
\begin{gathered}
\alpha_{3} \\
\beta_{3}
\end{gathered}
$$

$$
\gamma_{3}
$$

$$
\alpha^{\prime \prime \prime}
$$

$$
\beta^{\prime \prime \prime}
$$

$$
\gamma^{\prime \prime \prime}
$$

IV.

Calculations relating to differential coefficients.

$$
\begin{aligned}
& \text { Components of } \mathfrak{G}^{\prime \prime} \times \mathfrak{G}^{\prime \prime \prime} \\
& a_{1}=\beta^{\prime \prime} \gamma^{\prime \prime \prime}-\gamma^{\prime \prime} \beta^{\prime \prime \prime} \\
& b_{1}=\gamma^{\prime \prime} \alpha^{\prime \prime \prime}-\alpha^{\prime \prime} \gamma^{\prime \prime \prime} \\
& \text { - } c_{1}=\alpha^{\prime \prime} \beta^{\prime \prime \prime}-\beta^{\prime \prime} \alpha^{\prime \prime \prime} \\
& \text { Components of } \mathbb{G}^{\prime \prime \prime} \times \mathbb{S}^{\prime} \\
& a_{2}=\beta^{\prime \prime \prime} \gamma^{\prime}-\gamma^{\prime \prime \prime} \beta^{\prime} \\
& b_{2}=\gamma^{\prime \prime \prime} \alpha^{\prime}-\alpha^{\prime \prime \prime} \gamma^{\prime} \\
& c_{2}=\alpha^{\prime \prime \prime} \beta^{\prime}-\beta^{\prime \prime \prime} \alpha^{\prime} \\
& \text { Components of } \mathfrak{\varsigma}^{\prime} \times \mathfrak{\varsigma}^{\prime \prime} \\
& a_{3}=\beta^{\prime} \gamma^{\prime \prime}-\gamma^{\prime} \beta^{\prime \prime} \\
& b_{3}=\gamma^{\prime} \alpha^{\prime \prime}-\alpha^{\prime} \gamma^{\prime \prime} \\
& c_{3}=\alpha^{\prime} \beta^{\prime \prime}-\beta^{\prime} \alpha^{\prime \prime} \\
& G=\left(\bigodot^{\prime} \varrho^{\prime \prime} \varrho^{\prime \prime \prime}\right)=a_{1} \alpha^{\prime}+b_{1} \beta^{\prime}+c_{1} \gamma^{\prime}=a_{2} \alpha^{\prime \prime}+b_{2} \beta^{\prime \prime}+c_{2} \gamma^{\prime \prime}=a_{3} \alpha^{\prime \prime \prime}+b_{3} \beta^{\prime \prime \prime}+c_{3} \gamma^{\prime \prime \prime}
\end{aligned}
$$

These computations are controlled by the agreement of the three values of G.
The following are not necessary except when the corrections to be made are large:

$$
\begin{aligned}
& H=\left(\S_{2} \text { ङ }^{\prime \prime} \varsigma^{\prime}\right)=a_{2} \xi_{2}+b_{2} \eta_{2}+c_{2} \zeta_{2} \\
& L=\frac{1}{q_{2}}\left(1+\frac{H}{G}\right)\left(1-5 \frac{q_{2}{ }^{2}}{r_{2}{ }^{2}}\right)-\frac{R_{2} H}{q_{2} G}\left(1+\frac{q_{2}{ }^{2}}{r_{2}{ }^{2}}\right)
\end{aligned}
$$

V.

Corrections of the geocentric distances.
Components of $\mathfrak{S}^{\text {. }}$

$$
\begin{array}{ll}
\alpha=\alpha_{1}+\alpha_{2}+\alpha_{3} & C_{1}=-\frac{a_{1} \alpha+b_{1} \beta+c_{1} \gamma}{G} \\
\beta=\beta_{1}+\beta_{2}+\beta_{3} & f_{2}=-\frac{a_{2} \alpha+b_{2} \beta+c_{2} \gamma}{G} \\
\gamma=\gamma_{1}+\gamma_{2}+\gamma_{3} & O_{3}=-\frac{a_{3} \alpha+b_{3} \beta+c_{3} \gamma}{G} \\
\Delta q_{2}=C_{2}-\frac{6}{10} L\left(\Delta q_{2}\right)^{2}
\end{array}
$$

(This equation will generally be most easily solved by repeated substitutions.)

$$
\Delta q_{1}=C_{1}-\frac{s}{10} L\left(\Delta q_{2}\right)^{2} \quad \cdots \quad \Delta q_{3}=C_{3}-\frac{6}{10} L\left(\Delta q_{2}\right)^{2}
$$

VI.

Successive corrections.

$\Delta q_{1}, \Delta q_{2}, \Delta q_{3}$ are to be added as corrections to q_{1}, q_{2}, q_{3}. With the new values thus obtained the computation by equations $\mathrm{II}_{1}, \mathrm{II}_{2}, \mathrm{II}_{3}$ are to be recommenced. Two courses are now open:
(a) The work may be carried on exactly as before to the determination of new corrections for q_{1}, q_{2}, q_{3}.
(b) The computations by equations $\mathrm{III}^{\prime}, \mathrm{III}^{\prime \prime}, \mathrm{II}^{\prime \prime \prime}$, and IV may be omitted, and the old values of $a_{1}, b_{1}, c_{1}, a_{2}$, etc., G, and L may be used with the new residuals α, β, γ to get new corrections for q_{1}, q_{2}, q_{3} by the equations

$$
\begin{gathered}
\Delta q_{2}=\frac{C_{2}}{1+\frac{{ }_{夕}^{3}}{} L\left(D q_{2}+\frac{1}{2} C_{2}\right)}, \\
\Delta q_{1}=O_{1}+\Delta q_{2}-C_{2}, \quad \Delta q_{3}=O_{3}+\Delta q_{2}-C_{2}
\end{gathered}
$$

where $D q_{2}$ denotes the former correction of q_{2}. (More generally, at any stage of the work, $D q_{2}$ will represent the sum of all the corrections of q_{2} which have been made since the last computation of a_{1}, b_{1}, etc.)

So far as any general rule can be given, it is advised to recompute a_{1}, b_{1}, etc., and G once, perhaps after the second corrections of q_{1}, q_{2}, q_{3}, unless the assumed values represent a fair
approximation. Whether L is also to be recomputed, depends on its magnitude and on that of the correction of q_{2}, which remains to be made. In the later stages of the work, when the corrections are small, the terms containing L may be neglected altogether.

The corrcctions of q_{1}, q_{2}, q_{3} should be repeated until the equations

$$
\alpha=0 . \quad \beta=0 \quad \gamma=0
$$

are nearly satisfied. Approximate values of r_{1}, r_{2}, r_{3} may suffice for the following computations, which, however, must be made with the greatest exactness.

VII.

Test of the first hypothesis.
$\log r_{1}, \log r_{2}, \log r_{3}$, (approximate values from the preceding computations.)

$$
\begin{aligned}
& N=A_{1} B_{1} r_{1}^{-3}+B_{2} r_{2}^{-3}+A_{3} B_{3} r_{3}^{-3} \\
& s_{1}=A_{1} r_{1}+A_{1} B_{1} r_{1}^{-2} \\
& s_{2}=r_{2}-B_{2} r_{2}^{-2} \\
& s_{3}=A_{3} r_{3}+A_{3} B_{3} r_{3}^{-2} \\
& s=\frac{1}{2}\left(s_{1}+s_{2}+s_{3}\right) \\
& s-s_{1}, s-s_{2}, s-s_{3}
\end{aligned}
$$

The value of $s-s_{2}$ may be very small, and its logarithm in consequence ill determined. This will do wo harm if the computer is careful to use the same value-computed, of course, as carefully as possible-wherever the expression occurs in the following formulx.

$$
\begin{array}{ll}
\mathrm{R}=\int \frac{\left(s-s_{1}\right)\left(s-s_{2}\right)\left(s-s_{3}\right)}{8} & \tan \frac{1}{2}\left(v_{2}-v_{1}\right)=\frac{\mathrm{R}}{8-s_{3}} \\
n=\frac{2\left(s-s_{2}\right)}{N} & \tan \frac{1}{2}\left(v_{3}-v_{2}\right)=\frac{\mathrm{R}}{8-s_{1}} \\
& \tan \frac{1}{2}\left(v_{3}-v_{1}\right)=\frac{s-s_{2}}{\mathrm{R}}
\end{array}
$$

For adjustment of values:

$$
\frac{1}{2}\left(v_{3}-v_{1}\right)=\frac{1}{2}\left(v_{2}-v_{1}\right)+\frac{1}{2}\left(v_{3}-v_{2}\right)
$$

$$
e \sin \frac{1}{2}\left(v_{3}+v_{1}\right)=\frac{\frac{p}{r_{1}}-\frac{p}{r_{3}}}{2 \sin \frac{1}{2}\left(v_{3}-v_{1}\right)}
$$

$$
e \cos \frac{1}{2}\left(v_{3}+v_{1}\right)=\frac{\frac{p}{r_{1}}+\frac{p}{r_{3}}-2}{2 \cos \frac{1}{2}\left(v_{3}-v_{1}\right)}
$$

$$
\tan \frac{1}{2}\left(v_{3}+v_{1}\right) \quad e^{2}
$$

For control :

$$
e \cos v_{2}=\frac{p}{r_{2}}-1
$$

$$
\varepsilon=\sqrt{\frac{1-e}{1+e}} \quad a=\frac{p}{1-e^{2}}
$$

$$
\begin{gathered}
\tan \frac{1}{2} E_{1}=\varepsilon \tan \frac{1}{2} v_{1} \quad \tan \frac{1}{2} E_{2}=\varepsilon \tan \frac{1}{2} v_{2} \quad \tan \frac{1}{2} E_{3}=\varepsilon \tan \frac{1}{2} v_{3} \\
\tau_{1} \text { calc. }=a^{\frac{3}{3}}\left(E_{3}-E_{2}\right)+e a^{\frac{3}{2}} \sin E_{2}-e a^{\frac{3}{2}} \sin E_{3} \\
\tau_{3 \text { oalc. }}=a^{\frac{3}{3}}\left(E_{2}-E_{1}\right)+e a^{\frac{3}{2}} \sin E_{1}-e a^{\frac{3}{3}} \sin E_{2}
\end{gathered}
$$

VIII.

For the second hypothesis.

$$
\begin{aligned}
\delta \tau_{1} & =.0057613 k\left(\rho_{2}-\rho_{3}\right) \\
\delta \tau_{3} & =0057613 k\left(\rho_{1}-\rho_{2}\right) \\
\Delta \log \tau_{1} & =\log \tau_{1}-\log \left(\tau_{1 \text { eale }}-\delta \tau_{1}\right) \\
\Delta \log \tau_{3} & =\log \tau_{3}-\log \left(\tau_{3 \text { cale }}-\delta \tau_{3}\right) \\
\Delta \log \left(\tau_{1} \tau_{3}\right) & =\Delta \log \tau_{1}+\Delta \log \tau_{3} \\
\Delta \log \frac{\tau_{1}}{\tau_{3}} & =\Delta \log \tau_{1}-\Delta \log \tau_{3} \\
\Delta \log A_{1} & =-A_{3} \Delta \log \frac{\tau_{1}}{\tau_{3}} \\
\Delta \log A_{3} & =-A_{1} \Delta \log \frac{\tau_{1}}{\tau_{3}} \\
\Delta \log B_{1} & =\Delta \log \left(\tau_{1} \tau_{3}\right)-\frac{\tau_{1}{ }^{2}+\tau_{3}{ }^{2}}{12 B_{1}} \Delta \log \frac{\tau_{1}}{\tau_{3}} \\
\Delta \log B_{2} & =\Delta \log \left(\tau_{1} \tau_{3}\right)+\frac{\tau_{1}{ }^{2}-\tau_{3}^{2}}{12 B_{2}} \Delta \log \frac{\tau_{1}}{\tau_{3}} \\
\Delta \log B_{3} & =\Delta \log \left(\tau_{1} \tau_{3}\right)+\frac{\tau_{1}{ }^{2}+\tau_{3}^{2}}{12 B_{3}} \Delta \log \frac{\tau_{1}}{\tau_{3}}
\end{aligned}
$$

These corrections are to be added to the logarithms of $A_{1}, A_{3}, B_{1}, B_{2}, B_{3}$, in equations III_{1}, $\mathrm{II}_{2}, \mathrm{III}_{3}$, and the corrected equations used to correct the values of q_{1}, q_{2}, q_{3}, until the residuals α, β, γ vanish. The new values of A_{1}, A_{3} must satisfy the relation $A_{1}+A_{3}=1$, and the corrections $\Delta \log A_{1}, \Delta \log A_{3}$ must be adjusted, if necessary, for this end.

Third hypothesis.

A second correction of equations $\mathrm{III}_{1}, \mathrm{II}_{2}, \mathrm{III}_{3}$ may be obtained in the same manner as the first. but this will rarely be necessary.

IX.

Determination of the ellipse.

It is supposed that the values of

$$
\begin{array}{lll}
\alpha_{1}, \beta_{1}, \gamma_{1}, & \alpha_{2}, \beta_{2}, \gamma_{2}, & \alpha_{3}, \beta_{3}, \gamma_{3}, \\
r_{1}, r_{2}, r_{3}, & R_{1}, R_{2}, R_{3}, & s_{1}, s_{2}, s_{3},
\end{array}
$$

have been computed by equations $\mathrm{II}_{1}, \mathrm{II}_{2}, \mathrm{II}_{3}$ with the greatest exactness, so as to make the residuals α, β, γ vanish, and that the two formulæ for each of the quantities s_{1}, s_{2}, s_{3} give sensibly the same value.

\[

\]

For control only :

$$
s-s_{2}=\frac{S\left(S-s_{1}\right)\left(S-s_{4}\right)\left(S-s_{3}\right)}{s\left(s-s_{1}\right)\left(s-s_{3}\right)}
$$

$$
\begin{array}{ll}
\mathrm{R}^{2}=\frac{\delta\left(S-s_{1}\right)\left(S-\delta_{4}\right)\left(S-\delta_{3}\right)}{s_{2}{ }^{2}} & \tan \frac{1}{2}\left(r_{2}-r_{1}\right)=\frac{\mathrm{R}}{8-8_{3}} \\
N=A_{1} R_{1}+R_{2}+A_{3} R_{3} & \tan \frac{1}{2}\left(r_{3}-r_{2}\right)=\frac{\mathrm{R}}{8-8_{1}} \\
p=\frac{2 R^{2} s}{N\left(8-8_{1}\right)\left(8-\delta_{3}\right)} & \tan \frac{1}{2}\left(r_{3}-r_{1}\right)=\frac{\mathrm{Rs}}{\left(8-8_{1}\right)\left(8-8_{3}\right)}
\end{array}
$$

The computer should be carefnl to ase the corrected valnes of A_{1}, A_{3}. (See VIII.) Trifing errors in the angles should be distributed.

$$
\begin{aligned}
& e \sin \frac{1}{2}\left(r_{3}+r_{1}\right)=\frac{\frac{p}{r_{1}}-\frac{p}{r_{3}}}{2 \sin \frac{1}{2}\left(r_{3}-r_{1}\right)} \\
& e \cos \frac{1}{2}\left(r_{3}+r_{1}\right)=\frac{\frac{p}{r_{1}}+\frac{p}{r_{3}}-2}{2 \cos \frac{1}{2}\left(r_{3}-r_{1}\right)} \\
& \tan \frac{1}{2}\left(r_{3}+r_{1}\right) \quad e^{2}
\end{aligned}
$$

For control:

$$
e \cos r_{2}=\frac{p}{r_{2}}-1
$$

$$
\varepsilon=\sqrt{\frac{1-e}{1+e}} \quad a=\frac{p}{1-e^{3}} \quad b=\sqrt{ }(a p)
$$

Direction-cosines of semi-major-axis.

$$
\begin{aligned}
& l=-\frac{\cos r_{2}}{s_{2}} \alpha_{2}-\frac{\sin r_{2}}{\delta_{5}} \alpha_{5} \\
& m=-\frac{\cos r_{2}}{s_{2}} \beta_{2}-\frac{\sin r_{2}}{\delta_{5}} \beta_{5} \\
& n=-\frac{\cos r_{2}}{\delta_{2}} \gamma_{2}-\frac{\sin r_{2}}{s_{5}} \gamma_{5}
\end{aligned}
$$

Direction-cosines of semi-minor-axis

$$
\begin{aligned}
& \lambda=-\frac{\sin r_{2}}{夕_{2}} \alpha_{2}+\frac{\cos r_{2}}{\delta_{5}} \alpha_{5} \\
& \mu=-\frac{\sin \tau_{2}}{\delta_{2}} \beta_{2}+\frac{\cos r_{2}}{s_{5}} \beta_{5} \\
& \nu=-\frac{\sin v_{2}}{夕_{2}} \gamma_{2}+\frac{\cos r_{2}}{\delta_{5}} \gamma_{5}
\end{aligned}
$$

Components of the semi-axes.

$$
\begin{array}{lll}
a_{x}=a l & a_{y}=a m & a_{x}=a n \\
b_{x}=b \lambda & b_{y}=b \mu & b_{x}=b v
\end{array}
$$

X.

Time of perihelion passage.

$$
\begin{array}{ll}
\tan \frac{1}{2} E_{1}=\varepsilon \tan \frac{1}{2} v_{1} & \begin{array}{c}
\text { Corrections for aberration. } \\
\delta t_{1}=-.0057613 \rho_{1}
\end{array} \\
\tan \frac{1}{2} E_{2}=\varepsilon \tan \frac{1}{2} v_{2} & \delta t_{2}=-.0057613 \rho_{2} \\
\tan \frac{1}{2} E_{3}=\varepsilon \tan \frac{1}{2} v_{3} & \delta t_{3}=-.0057613 \rho_{3}
\end{array}
$$

$$
\log .0057613=7.76052
$$

$$
\begin{aligned}
& t_{1}+\delta t_{1}-T=k^{-1} a^{\frac{3}{2}}\left(E_{1}-e \sin E_{1}\right) \\
& t_{2}+\delta t_{2}-T=k^{-1} a^{3}\left(E_{2}-e \sin E_{2}\right) \\
& t_{3}+\delta t_{3}-T=k^{-1} a^{\frac{3}{2}}\left(E_{3}-e \sin E_{3}\right)
\end{aligned}
$$

The threefold determination of T affords a control of the exactness of the solution of the problem. If the discrepancies in the values of T are such as to require another correction of the formulæ (a third hypothesis), this may be based on the equations

$$
\Delta \log \tau_{1}=M \frac{T_{(3)}-T_{(9)}}{t_{3}-t_{2}} \quad \Delta \log \tau_{3}=M \frac{T_{(2)}-T_{(1)}}{t_{2}-t_{1}}
$$

where $T_{(1)}, T_{(2)}, T_{(\mathrm{s})}$ denote, respectively, the values obtained from the first, second, and third observations, and M the modulus of common logarithms.

XI.

For an ephemeris.

$$
\frac{k}{a^{\frac{3}{2}}}(t-T)=E-e \sin E
$$

Heliocentric co-ordinates. (Components of \Re.)

$$
\begin{aligned}
& x=-e a_{z}+a_{x} \cos E+b_{x} \sin E \\
& y=-e a_{y}+a_{y} \cos E+b_{y} \sin E \\
& z=-e a_{z}+a_{z} \cos E+b_{z} \sin E
\end{aligned}
$$

These equations are completely controlled by the agreement of the computed and observed positions and the following relations between the constants:

$$
a_{z} b_{z}+a_{y} b_{y}+a_{z} b_{z}=0 \quad a_{x}{ }^{2}+a_{y}{ }^{2}+a_{z}{ }^{2}=a^{2} \quad b_{x}{ }^{2}+b_{y}{ }^{2}+b_{z}{ }^{2}=\left(1-e^{2}\right) a^{2}
$$

XII.

When an approximate orbit is known in advance, we may use it to improve our fundamental equation. The following appears to be the most simple method:

Find the excentric anomalies E_{1}, E_{2}, E_{3}, and the heliocentric distances r_{1}, r_{2}^{*}, r_{3}, which belong in the approximate orbit to the times of observation corrected for aberration.

Calculate B_{1}, B_{3}, as in § I, using these corrected times.
Determine A_{1}, A_{3} by the equation

$$
\frac{A_{1}\left(1+\frac{B_{1}}{r_{1}{ }^{3}}\right)}{\sin \left(E_{3}-E_{2}\right)-e \sin E_{3}+e \sin E_{2}}=\frac{A_{3}\left(1+\frac{B_{3}}{r_{3}{ }^{3}}\right)}{\sin \left(E_{2}-E_{1}\right)-e \sin E_{2}+e \sin E_{1}}
$$

in connection with the relation $A_{1}+A_{3}=1$.

Determine B_{2} so as to make

$$
\frac{A_{1} \frac{B_{1}}{r_{1}{ }^{3}}+\frac{B_{2}}{r^{3}}+A_{3} \frac{B_{3}}{r_{3}}}{4 \sin \frac{1}{2}\left(E_{2}-E_{1}\right) \sin \frac{1}{2}\left(E_{3}-E_{2}\right) \sin \frac{1}{2}\left(E_{3}-E_{1}\right)}
$$

equal to either member of the last equation.
It is not necessary that the times for whieh $E_{1}, E_{2}, L_{3}, r_{1}, r_{2}, r_{3}$, are calculated shonld precisely agree with the times of observation corrected for aberration. Let the former be represented by $t_{1}{ }^{\prime}, t_{2}{ }^{\prime}, t_{3}{ }^{\prime}$, and the latter by $t_{1}{ }^{\prime \prime}, t_{2}{ }^{\prime \prime}, t_{3}{ }^{\prime \prime}$; and let

$$
\begin{aligned}
& \Delta \log \tau_{1}=\log \left(t_{3}^{\prime \prime}-t_{2}^{\prime \prime}\right)-\log \left(t_{3}^{\prime}-t_{2}^{\prime}\right) \\
& \Delta \log \tau_{3}=\log \left(t_{2}^{\prime \prime}-t_{1}^{\prime \prime}\right)-\log \left(t_{2}^{\prime}-t_{1}^{\prime}\right)
\end{aligned}
$$

We may find $B_{1}, B_{3}, A_{1}, A_{3}, B_{2}$, as above, using $t_{1}^{\prime}, t_{2}^{\prime}, t_{3}^{\prime}$, and then use $\Delta \log \tau_{1}, \Delta \log \tau_{2}$ to correct their values, as in § VIII.

NUMERICAL EXAMPLE.

To illustrate the numerical computations wo have chosen the following example, both on aceount of the large heliocentric motion, and beeause Ganss and Oppolzer have treated the same data by their different methods.

The data are taken from the Theoria Motus, § 159, viz:

Times, 1805, September	5.51336	139.42711	265. 39813
Longitudes of Ceres	95° \$2 $2^{\prime} 18^{\prime \prime} .56$	$99^{\circ} 49^{\prime} \quad 5^{\prime \prime} .87$	$11805^{\prime} 28^{\prime \prime} .85$
Latitudes of Ceres	-0 $0^{\circ} 59^{\prime} 34^{\prime \prime} .06$	+70 $16^{\prime} 36^{\prime \prime} .80$	+70 $38^{\prime} 49^{\prime \prime} .39$
Longitudes of the Earth	$342^{\circ} 54^{\prime} 56^{\prime \prime} .00$	- $11 \%^{\circ} 12^{\prime} 43^{\prime \prime} .25$	$241^{\circ} 58^{\prime} 50^{\prime \prime} .71$
Logrs of the Sun's distanco	0.0031514	9.9929861	0.0056974

The positions of Ceres have been freed from the eflects of parallax and aberration.
I.

From the given times we obtain the following valnes:

	Numbers.	Logarithms.
$t_{2}-t_{1}$	133.91375	2.1268252
$t_{3}-t_{2}$	125.97102	2.1002706
$t_{3}-t_{1}$	259.88477	2.4147809
A_{1}	.4847187	9.6854897
A_{3}	.5152812	9.7120443
τ_{1}		.3358520
τ_{3}		9.3624066
B_{1}		9.6692113
B_{3}		9.5623916
B_{3}		

Control:

$$
\begin{aligned}
A_{1} B_{1}+B_{2}+A_{3} B_{3} & =2.4959086 \\
\frac{1}{2} \tau_{1} \tau_{3} & =2.4959081
\end{aligned}
$$

H. Mis. $597 \ldots 7$

II.

From the given positions we get:

$\log X_{1}$	9.9835515	+	$\log X_{2}$	9.6531725	-	$\log X_{3}$	9.6775810	-
$\log Y_{1}$	9.4711748	\pm	$\log Y_{2}$	9.9420444	$+$	$\log Y_{3}$	9.9515547	-
Z_{1}			Z_{2}	9. ${ }^{0}$		Z_{3}	¢ ${ }_{\text {9, }}$	
$\log \xi_{1}$	8.9845270 0.9979027	-	$\log \xi_{2}$	9.2282738	1	$\log \mathrm{E}_{3}$	9.6690294	\pm
$\log \eta_{1}$	9.9979027	+	$\log \eta /$	9.9900800 9.1026549	$+$	$\log \eta_{3}$	9.9416855 9.1240813	-
$\log \zeta_{1}$	8.2387150		$\log \zeta_{2}$	9.1026549	$+$	$\log _{5} 5_{3}$	9. 1240813	+
	.3874081 .8645336	+	$\mathrm{E}_{2}{ }^{+} \mathrm{\delta}_{2}$ $p_{2}{ }^{2}$.9314243 .1006681	$+$	$\mathrm{C}_{3} \cdot{ }^{\cdot} \mathrm{d}_{3}$ $p_{3}{ }^{2}$.5599304 .7130624	+

III.

The preceding computations furnish the numerical values for the equations $\mathrm{III}_{1}, \mathrm{II}^{\prime}, \mathrm{III}_{2}$, $\mathrm{III}^{\prime \prime}, \mathrm{II}_{3}, \mathrm{JII}^{\prime \prime \prime}$, which follow. Brackets indicate that logarithms have been substituted for numbers.

We have now to assume some values for the heliocentric distances r_{1}, r_{2}, r_{3}. A mean proportional between the mean distances of Mars and Jupiter from the Sun suggests itself as a reasonable assumption. In order, however, to test the convergence of the computations, when the assumptions are not happy, we will make the much less probable assumption (actually much farther from the truth) that the heliocentric distances are an arithmetical mean between the distances of Mars and Jupiter. This gives . 526 for the logarithm of each of the distances r_{1}, r_{2}, r_{3}. From these assumed values we compute the first columns of numbers in the three following tables.

$$
\left.\begin{array}{ll}
q_{1}=\rho_{1}-.3874081 & \alpha_{1}=-[8.6700167]\left(q_{1}-9.5901555\right)\left(1+R_{1}\right) \\
r_{1}{ }^{2}=q_{1}{ }^{2}+.8645336 & \beta_{1}=[9.6833924]\left(q_{1}+.0900552\right)\left(1+R_{1}\right) \\
R_{1}=[9.6692113] r_{1}{ }^{-3} & \gamma_{1}=-[7.9242047]\left(q_{1}+.3874081\right)\left(1+R_{1}\right)
\end{array}\right\} I_{1}
$$

\square

-.66731
2.55875
.434960
8.364331
.009934
8.369626
.336506
1.307304
.025316

-.04558
2.51317
.4280791
8.3849740
.010422
8.3957468
.3390605
1.28623
.0249518
.056343
.4620942
.0079821

-.0010434	+.0000006
2.514134	2.5142140
.4282376	.4282377
8.3849985	
.0104010	
8.3951457	
.339018	
1.2867056	
.0249601	

$$
\begin{aligned}
q_{2} & =\rho_{2}+.9314223 \\
r_{2}{ }^{2} & =q_{2}{ }^{2}+.1006681 \\
R_{2} & =[0.3183722] r_{2}{ }^{-3} \\
P^{\prime \prime} & =\frac{[.47712] R_{2} q_{2}}{\left(1-K_{2}\right) r_{2}{ }^{2}}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\alpha_{2}=+[9.2282738]\left(q_{2}+1.7286820\right)\left(1-R_{2}\right) \\
\beta_{2}=-[9.9900800]\left(q_{2}-.0361309\right)\left(1-R_{2}\right) \\
\gamma_{2}=-[9.1026549]\left(q_{2}-.9314223\right)\left(1-R_{2}\right)
\end{array}\right\} \mathrm{II}_{2}
$$

$$
\begin{aligned}
q_{3} & =\rho_{3}-.5599304 \\
r_{3}{ }^{2} & =q_{3}^{2}+.7130624 \\
R_{3} & =[9.5623916] r_{3}{ }^{-3}
\end{aligned}
$$

$$
\left.\alpha_{3}=-[9.3810737]\left(q_{3}+1.5798163\right)\left(1+R_{3}\right)\right)
$$

$$
\left.\beta_{3}=[9.6537308]\left(q_{3}-.4630521\right)\left(1+R_{3}\right)\right\} \mathrm{III}_{3}
$$

$$
\left.\gamma_{3}=[8.8361256]\left(q_{3}+.5599304\right)\left(1+R_{3}\right)\right)
$$

$$
P^{\prime \prime \prime}=\frac{[.47712] R_{3} q_{3}}{\left(1+R_{3}\right) r_{3}^{2}}
$$

$$
\left.\begin{array}{l}
\alpha^{\prime \prime \prime}=-.240477-\left[9.33107 \mid R_{3}-P^{\prime \prime \prime} \alpha_{3}\right. \\
\beta^{\prime \prime \prime}=+.450 \check{537}+[9.65373] R_{3}-P^{\prime \prime \prime} \beta_{3} \\
\gamma^{\prime \prime \prime}=+.068569+[8.83613] R_{3}-P^{\prime \prime \prime} \gamma_{3}
\end{array}\right\} \text { III }^{\prime \prime \prime}
$$

Δq_{3} q_{3} $\log r_{3}$ $\log R_{3}$ $\log \left(1+R_{3}\right)$ $\log p^{\prime \prime \prime}$ α_{3} β_{3} γ_{3} $\alpha^{\prime \prime \prime}$ $\beta^{\prime \prime \prime}$ $\gamma^{\prime \prime \prime}$	$\begin{aligned} & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \end{aligned}$	$\begin{array}{r} 3.24945 \\ 0.52600 \\ 7.98439 \\ .00417 \\ 7.91715 \\ 1.17253 \\ 1.26749 \\ .26373 \\ .22847 \\ .44441 \\ .06690 \end{array}$	$\begin{array}{r} -.80780 \\ 2.44165 \\ .412217 \\ 8.325742 \\ .009099 \\ 8.357016 \\ .987590 \\ .910305 \\ .210171 \end{array}$	-.04055 2.40110 . .457319 8.3451948 .0095108 8.3817516 .9785152 .0924956 .2075292 . .222835 .4390163 .0650888	$+.0025316$ 2.4036316 .4061394 8. 3439733 . 0094843 8. 3401993 .9790776 .8936069 . 2076940	$\begin{array}{r} .0000031 \\ 2.4036347 \\ .4061399 \end{array}$

IV.

The values of $\alpha^{\prime}, \beta^{\prime}$, etc., furnish the basis for the computation of the following quantities:

$$
\begin{array}{lll}
a_{1}=-.01254 & a_{2}=-.03517 & a_{3}=-.07232 \\
b_{1}=+.01726 & b_{2}=-.005 \pm 5 & b_{3}=-.00845 \\
c_{1}=-.15746 & c_{2}=-.08526 & c_{3}=-.04050
\end{array}
$$

For_A we get three values sensibly identical. Adopting the mean, we set

$$
G=.01006
$$

We also get

$$
H=-.00998, \quad \quad L=.02322 . *
$$

V.

Taking the values of α_{1}, α_{2}, etc., from the columns under $\mathrm{III}_{1}, \mathrm{III}_{2}, \mathrm{III}_{3}$, we form the residuals

$$
\alpha=-.06058, \quad \beta=-.16692, \quad \gamma=-.05557
$$

From these, with the numbers last computed, we get

$$
C_{1}=-.65888, \quad C_{2}=-.76983, \quad C_{3}=-.79939,
$$

[^4]which might be used as corrrections for our values of q_{1}, q_{2}, q_{3}. To get more accurate values for these corrections we set
$$
\Delta q_{2}=O_{2}-\frac{8}{10} L\left(\Delta q_{2}\right)^{2}, \quad \text { or } \Delta q_{2}=-.76983-.01393\left(\Delta q_{2}\right)^{2},
$$
which gives
$$
\Delta q_{2}=-.77826
$$

The quadratic term diminishes the value of Δq_{2} by .00843 . Subtracting the same quantity from C_{1} and C_{2} we get

$$
\Delta q_{1}=-.66731, \quad \Delta q_{3}=-.80780
$$

VI.

Applying these corrections to the values of q_{1}, q_{2}, q_{3} we compute the second numerical columns under equations $\mathrm{IH}_{1}, \mathrm{IH}_{2}$, and II_{3}. We do not go on to the computations by equations II^{\prime}, ete., but content ourselves with the old values of a_{1}, b_{1}, etc., G, and L, which with the new residuals,

$$
\alpha=-.012595, \quad \beta=.044949, \quad \gamma=.003012,
$$

give

$$
\begin{array}{lrr}
O_{1}=-.04567, & O_{2}=.004952, & C_{3}=-.04064 . \\
\Delta q_{2}=O_{2}-L\left(D q_{2}+\frac{1}{2} O_{2}\right) \Delta q_{2}=.004952-.02322(-.77826+.00247) \Delta q_{2} .
\end{array}
$$

This gives

$$
\Delta q_{2}=.005042
$$

As the term containing L has increased the value of Δq_{2} by .00009 , we add this quantity to C_{1} and C_{3}, and get

$$
\Delta q_{1}=-.04558, \quad \Delta q_{3}=-.04055
$$

With these corrections we compute the third numerical columns under equations II_{1}, etc. This time we recompute the quantities α^{\prime}, etc., with which we repeat the principal computations of IV, and get the new values:

$$
\begin{array}{lll}
a_{1}=-.0167215 & a_{2}=-.0335815 & a_{3}=-.0743299 \\
b_{1}=+.0149145 & b_{2}=-.0054413 & b_{3}=-.0098825 \\
c_{1}=-.1576886 & c_{2}=-.0779570 & c_{3}=-.0474318 \\
& G=.0090929 &
\end{array}
$$

The quantities H and L we neglect as of no consequence at this stage of the approximation.
With these values the new residuals,

$$
\alpha=+.0002919, \quad \beta=-.0000044, \quad \gamma=+.0000288
$$

give

$$
\Delta q_{1}=C_{1}=+.0010434, \quad \Delta q_{2}=C_{2}=+.0013222, \quad \Delta q_{3}=C_{3}=+.0025316 .
$$

These corrections furnish the basis for the fourth columns of numbers under equations III_{1}, etc., which give the residuals

$$
\alpha=+.0000002, \quad \beta=+.0000009, \quad \gamma=+.0000001,
$$

and the new corrections

$$
\Delta q_{1}=+.0000006, \quad \Delta q_{2}=+.0000021, \quad \Delta q_{3}=+.0000031
$$

The corrected values of q_{1}, q_{2}, q_{3} give

$$
\log r_{1}=0.4282377, \quad \log r_{2}=0.4132937, \quad \log r_{3}=0.4061399
$$

We have carried the approximation farther than is necessary for the following correction of the formuta, in order to see exactly where the uncorrected formula would lead us, and for the control afforded by the fourth residuals.

VII.

The computations for the test of the uncorrected formula (the first hypothesis) are as follows:

		Number or arc.	Logarithm.			Nnmber or arc.	Logarithm.
r_{1}			0.4252377	e	+		8.9025438
r_{2}			0.4132937	3	+		9.9652\% 59
${ }_{-3}$			0. 4061399	-	+		0.4419546
$d_{1} R_{1} r_{1}{ }^{-3}$	$+$. 01174865	8. 0699879	$\tan \frac{1}{4} v_{1}$	-	$-35^{\circ} 41^{\prime \prime} 39^{\prime \prime} .75$	9.8563809
$B_{2} r_{8}{ }^{-3}$	$+$. 11980944	9. 0784911	$\tan \frac{1}{\frac{1}{3} v_{2}}$	-	$-19^{\circ} 53^{\prime \prime} 28^{\prime \prime} .93$	9.5584981
$A_{3} B_{3} r^{-3}$	$+$. 01137670	8. 0560162	$\tan \frac{1}{4} v_{3}$	-	- $4^{\circ} 13^{\prime} 52^{\prime \prime} .55$	8.8691380
N	$+$. 14293479	9. 1551380	$\tan \frac{1}{2} E_{1}$	-	$\begin{array}{llll}-33^{\circ} & 33^{\prime \prime} & 0^{\prime \prime} .17\end{array}$	9. 8216068
	,	1. 3308476	0. 1241283	$\tan \frac{1}{2} E_{2}$	-	-180 $28^{\prime \prime} 6^{\prime \prime} .35$	9.5237240
	+	2.2796616	0. 3578704	$\tan \frac{1}{2} E_{3}$	-	- $3^{\circ} 54^{\prime} 24^{\prime \prime} .21$	8. 8343639
83	$+$	1.3417404	0. 1276685	$\sin E_{1}$	-	$\begin{array}{lll}-67^{\circ} & 6^{\prime} & 0^{\prime \prime} .34\end{array}$	9.9643473
${ }_{8}^{8}$	$+$	2.4761248	0.3937745	$\sin E_{2}$	-	$-36^{\circ} 56^{\prime} 12^{\prime \prime} .70$	9.7788272
88^{8-8}	\pm	1.1452772	0.0589106	$\sin E_{3}$	-	- $7^{\circ} 48^{\prime} 48^{\prime} .42$	9.1333734
$8-8$ $8-8$ 8	\pm	0.1964632 1.1343844	9. 2932×12 0.0547602	ea $a^{\frac{3}{3}} \sin E_{1}$	-	. 3387061	9.5298230
R	$+$		9. 5065898	$e a^{\frac{1}{3}} \sin E_{2}$	-	. 2209545	9.3443029
	+		0. 4391732	$e a^{\frac{1}{2}} \sin E_{3}$	-	. 0499861	8.6988491
$\tan \frac{1}{2}\left(v_{2}-v_{1}\right)$	$+$		9.4518296				
$\tan \frac{1}{2}\left(v_{3}-v_{3}\right)$	\pm		9.4476792 9.7866915	${ }^{\frac{1}{2}}{ }^{\frac{1}{2}}\left(E_{3}-E_{1}\right)$	$+$	2.4226307 2.3391145	0.3842872 0.3690515
$\tan _{\sin }^{\frac{1}{3}\left(v_{3}-v_{1}\right)}$	+	$31^{\circ} 27^{\prime} 47^{\prime \prime} .20$	9.7866915 8.7099387	$a^{\frac{1}{2}}\left(E_{3}-E_{2}\right)$	$+$	2.3391145 2. 3048791	0.3690515
$e \sin \frac{1}{2}\left(v_{3}+v_{1}\right)$ $e \cos \frac{1}{t}\left(v_{3}+v_{1}\right)$	+		8.7872701	τ_{3} calc. τ_{1} calc.	+	2.1681461	$\begin{aligned} & 0.3626482 \\ & 0.3360885 \end{aligned}$
$\tan \frac{1}{3}\left(v_{3}+v_{1}\right)$	-	$-39^{\circ} 55^{\prime} 32^{\prime \prime} .31$	9.9226686	trealc.	7		

VIII.

The logarithms of the calculated values of the intervals of time exceed those of the giren values by .0002416 for the first interval $\left(\tau_{3}\right)$ and .0002365 for the sccond $\left(\tau_{1}\right)$. Therefore, since the corrections for aberration have been incorporated in the data, we set for the correctiou of the formula (for the second hypothesis)

$$
\Delta \log \tau_{1}=-.0002365 \quad \Delta \log \tau_{3}=-.0002416
$$

This gives

$$
\Delta \log A_{1}=.0000026 \quad \Delta \log A_{3}=-.0000025
$$

$$
\Delta \log B_{1}=-.0004872 \quad \Delta \log B_{2}=-.0004782 \quad \Delta \log B_{3}=-.0004665
$$

The new valucs of the logarithms of A_{1}, A_{3} are

$$
\log A_{1}=9.6854923 \quad \log A_{3}=9.7120418
$$

The equations for an ephemeris will then be:
$T=1806$, June 23.96378 , Paris mean time
$[2.8863140](t-T)=E_{\text {in seeonds }}-[4.2216530] \sin E$

Heliocentric coördinates relating to the ecliptic.

$$
\begin{aligned}
& x=+.1820765-[0.3530261] \cos E-[0.1827783] \sin E \\
& y=-.1244853+[0.1878904] \cos E-[0.3603153] \sin E \\
& z=-.0373987+[9.6656285] \cos E+[9.3320758] \sin E
\end{aligned}
$$

The agreement of the calculated geocentric positions with the data is shown in the following table:

Times, 1805, September	5. 51336	139.42711	265.39813
Second hypothesis: longitudes errors \qquad latitudes \qquad errors \qquad	$\begin{array}{r} 95^{\circ} 32^{\prime} 18^{\prime \prime} .88 \\ 0^{\prime \prime} .82 \\ -0^{\circ} 59^{\prime} 34^{\prime \prime} .01 \\ 0^{\prime \prime} .05 \end{array}$	$\begin{array}{r} 99^{\circ} 49^{\prime} 5^{\prime \prime \prime} .87 \\ 0^{\prime \prime} .00 \\ 7^{\circ} 16^{\prime} 36^{\prime \prime \prime} .82 \\ 0^{\prime \prime} .02 \end{array}$	$\begin{array}{r} 118^{\circ} 5^{\prime} 28^{\prime \prime} .52 \\ 0^{\prime \prime} .33 \\ -0^{\prime \prime} 38^{\prime \prime} 49^{\prime \prime} .34 \\ -0^{\prime \prime} .05 \end{array}$
Third hypothesis: longitudes \qquad errors \qquad latitudes \qquad errors \qquad	$\begin{array}{r} 95^{\circ} 32^{\prime} 18^{\prime \prime \prime} .65 \\ 0^{\prime \prime} .09 \\ -0^{\circ} 59^{\prime} 34^{\prime \prime} .04 \\ 0^{\prime \prime} .02 \end{array}$	$\begin{array}{r} 99^{\circ} 49^{\prime} 5^{\prime \prime} .82 \\ -0^{\prime \prime} .05 \\ 7 \circ 16^{\prime} 36^{\prime \prime} .78 \\ -0^{\prime \prime} .02 \end{array}$	$\begin{array}{r} 118^{\circ} 5^{\prime} 28^{\prime \prime} .79 \\ -0^{\prime \prime} .06 \\ 7^{\circ} 38^{-} 49^{\prime \prime \prime} .38 \\ -0^{\prime \prime} .01 \end{array}$

The immediate result of each hypothesis is to give three positions of the planet, from which, with the times, the orbit may be calculated in various ways, and with different results, so far as the positions deviate from the truth on account of the approximate nature of the hypothesis. In some respects, therefore, the correctness of an hypothesis is best shown by the values of the geocentric or heliocentric distances which are derived directly from it. The logarithms of the heliocentric distances are brought together in the following table, and corresponding values from Gauss* and Oppolzert are added for comparison. It is worthy of notice that the positions given by our second hypothesis are substantially correct, and if the orbit had been calculated from the first and third of these positions with the interval of time, it would have left little to be desired.

	$\log r_{1}$.	$\log r_{2}$.	$\log r_{3}$.
First hypothesis 4282377	. 4132937	. 4061399
Second hypothesis	. 42827878	. 41328809	. 4061998
Third hypothesis 4282786	. 4132808	. 4062003
Gauss:			
First hypothesis....	. 4323934	. 4114726	. 4094712
Second hypothesis....	. 4291773	. 4129371	. 4071975
Third hypothesis.....	$\begin{aligned} & .4284841 \\ & .4282792 \end{aligned}$.4132107 .4132817	$\begin{array}{r} .4064697 \\ .4062033 \end{array}$
Oppolzer:			
First hypothesis......			. 4061699
Second hypothesis.... Third hypothesis	$\begin{array}{r} .4282794 \\ .4282787 \end{array}$.4132801	.4061976 .4062009

In comparing the different methods, it should be observed that the determination of the positions in any hypothesis by Gauss's method requires successive corrections of a single independent variable, a corresponding determination by Oppolzer's method requires the successive corrections of two independent variables, while the corresponding determination by the method of the present paper requires the successive corrections of three independent variables.

[^5]
[^0]: * Veetors, or directed quantities, will be represented in this paper by German capitals. The following notations will be used in connection with them.

 The sign $=$ denotes identity in direetiou as well as lougth.
 The sign + denotes geometrical addition, or what is called composition in mechanics.
 The sign - denotes reversal of direction, or composition after reversal.
 The notation $\mathbb{N} \cdot \mathcal{B}$ denotes the product of the lengths of the vectors and the cosine of the augle which they iuclude. It will be called the direct product of \mathfrak{N} and \mathfrak{B}. If x, y, z are the rectangular components of \mathfrak{Q}, and x^{\prime}, y^{\prime}, z^{\prime} those of \mathbf{B},

 $$
 V \cdot \cdot \mathbb{U}=x x^{\prime}+y y^{\prime}+z z^{\prime} .
 $$

 Vl. Vl may be written V^{2} and called the square of $V!$.
 The notation $\mathbb{N} \times \mathbb{B}$ will be used to denote a vector of whieh the length is the product of the lengths of $\mathfrak{F l}$ aud \mathbb{P} aud the sino of the angle which they include. Its direetion is perpendicular to \mathcal{Y} and \mathbb{B}, and on that side on which

[^1]: *These equations are obtained by taking the direct products of both members of the precerling equation with $\varrho^{\prime \prime} \times \Xi^{\prime \prime \prime}, \Theta^{\prime \prime \prime} \times \Xi^{\prime}$, and $\Xi^{\prime} \times \Xi^{\prime \prime}$, respectively. See foot-note on page 81.
 \ddagger In the case of Swift's comet (V, 1880), the writer found by the quadratic equation -.247 aud -.116 for corrections of the assumed geocentric distance .250. The first of these numbers givos an approximation to the position of the earth; the second to that of the comet, viz., the geocentric distanco. 134 instead of the true value .1333. The coefficient $\frac{1}{5}^{6}$ was used in tho quadratic equation; with tho coefficient $\frac{1}{2}$ the approximatious would not be qnite so good. The value of the correction obtained by neglecting the quadratic term was .070 , which indicates that the approximations (in this very critical case) would be quite tedions without the nse of tho quadratic term.

[^2]: *In the case mentioned in the preceding foot-note, from $\left[\Delta q_{2}\right]=-.079$ and $\rho_{2}=.25$, we get $\Delta q_{2}=-.1155$, which is sensibly the same value as that obtained by calculating the quadratic term.

[^3]: * When an approximate orbit is known in advance, we may correct tho fundamental equation at once. The formula will be given in the Summary, Xir.

[^4]: * It would have been better to omit altogether the calculation of H and L, if the suall value of the latter could lave been foresecn. In fact, it will be found that the terms containing L hardly impreve the couvcrgence, being smaller than quantities which have been neglected. Nevertheless, the use of these terms in this example will illustrate a process which in other cases may be beneficial.

[^5]: *Theoria motus, § 159. \ddagger Lehrbuch zur Bahnbestimmung der Kometen und Planeten, 2d ed., vol. I, p. 394.

